66 research outputs found

    From Algae to Angiosperms – Inferring the Phylogeny of Green Plants ( Viridiplantae ) from 360 Plastid Genomes

    Get PDF
    Background Next-generation sequencing has provided a wealth of plastid genome sequence data from an increasingly diverse set of green plants (Viridiplantae). Although these data have helped resolve the phylogeny of numerous clades (e.g., green algae, angiosperms, and gymnosperms), their utility for inferring relationships across all green plants is uncertain. Viridiplantae originated 700-1500 million years ago and may comprise as many as 500,000 species. This clade represents a major source of photosynthetic carbon and contains an immense diversity of life forms, including some of the smallest and largest eukaryotes. Here we explore the limits and challenges of inferring a comprehensive green plant phylogeny from available complete or nearly complete plastid genome sequence data. Results We assembled protein-coding sequence data for 78 genes from 360 diverse green plant taxa with complete or nearly complete plastid genome sequences available from GenBank. Phylogenetic analyses of the plastid data recovered well-supported backbone relationships and strong support for relationships that were not observed in previous analyses of major subclades within Viridiplantae. However, there also is evidence of systematic error in some analyses. In several instances we obtained strongly supported but conflicting topologies from analyses of nucleotides versus amino acid characters, and the considerable variation in GC content among lineages and within single genomes affected the phylogenetic placement of several taxa. Conclusions Analyses of the plastid sequence data recovered a strongly supported framework of relationships for green plants. This framework includes: i) the placement of Zygnematophyceace as sister to land plants (Embryophyta), ii) a clade of extant gymnosperms (Acrogymnospermae) with cycads + Ginkgo sister to remaining extant gymnosperms and with gnetophytes (Gnetophyta) sister to non-Pinaceae conifers (Gnecup trees), and iii) within the monilophyte clade (Monilophyta), Equisetales + Psilotales are sister to Marattiales + leptosporangiate ferns. Our analyses also highlight the challenges of using plastid genome sequences in deep-level phylogenomic analyses, and we provide suggestions for future analyses that will likely incorporate plastid genome sequence data for thousands of species. We particularly emphasize the importance of exploring the effects of different partitioning and character coding strategies. http://www.biomedcentral.com/1471-2148/14/2

    From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes

    Get PDF
    Background Next-generation sequencing has provided a wealth of plastid genome sequence data from an increasingly diverse set of green plants (Viridiplantae). Although these data have helped resolve the phylogeny of numerous clades (e.g., green algae, angiosperms, and gymnosperms), their utility for inferring relationships across all green plants is uncertain. Viridiplantae originated 700-1500 million years ago and may comprise as many as 500,000 species. This clade represents a major source of photosynthetic carbon and contains an immense diversity of life forms, including some of the smallest and largest eukaryotes. Here we explore the limits and challenges of inferring a comprehensive green plant phylogeny from available complete or nearly complete plastid genome sequence data. Results We assembled protein-coding sequence data for 78 genes from 360 diverse green plant taxa with complete or nearly complete plastid genome sequences available from GenBank. Phylogenetic analyses of the plastid data recovered well-supported backbone relationships and strong support for relationships that were not observed in previous analyses of major subclades within Viridiplantae. However, there also is evidence of systematic error in some analyses. In several instances we obtained strongly supported but conflicting topologies from analyses of nucleotides versus amino acid characters, and the considerable variation in GC content among lineages and within single genomes affected the phylogenetic placement of several taxa. Conclusions Analyses of the plastid sequence data recovered a strongly supported framework of relationships for green plants. This framework includes: i) the placement of Zygnematophyceace as sister to land plants (Embryophyta), ii) a clade of extant gymnosperms (Acrogymnospermae) with cycads + Ginkgo sister to remaining extant gymnosperms and with gnetophytes (Gnetophyta) sister to non-Pinaceae conifers (Gnecup trees), and iii) within the monilophyte clade (Monilophyta), Equisetales + Psilotales are sister to Marattiales + leptosporangiate ferns. Our analyses also highlight the challenges of using plastid genome sequences in deep-level phylogenomic analyses, and we provide suggestions for future analyses that will likely incorporate plastid genome sequence data for thousands of species. We particularly emphasize the importance of exploring the effects of different partitioning and character coding strategies. http://www.biomedcentral.com/1471-2148/14/2

    Another look at the root of the angiosperms reveals a familiar tale

    Get PDF
    Since the advent of molecular phylogenetics more than 25 years ago, a major goal of plant systematists has been to discern the root of the angiosperms. While most studies indicate that Amborella trichopoda is sister to all remaining extant flowering plants, support for this position has varied with respect to both the sequence data sets and analyses employed. Recently, Goremykin et al. (2013) questioned the “Amborella-sister hypothesis” using a “noise-reduction” approach and reported a topology with Amborella + Nymphaeales (water lilies) sister to all remaining angiosperms. Through a series of analyses of both plastid genomes and mitochondrial genes, we continue to find mostly strong support for the Amborella-sister hypothesis and offer a rebuttal of Goremykin et al. (2013). The major tenet of Goremykin et al. is that the Amborella-sister position is determined by noisy data – i.e. characters with high rates of change and lacking true phylogenetic signal. To investigate the signal in these noisy data further, we analyzed the discarded characters from their noise-reduced alignments. We recovered a tree identical to that of the currently accepted angiosperm framework, including the position of Amborella as sister to all other angiosperms, as well as all other major clades. Thus, the signal in the “noisy” data is consistent with that of our complete data sets – arguing against the use of their noise-reduction approach. We also determined that one of the alignments presented by Goremykin et al. yields results at odds with their central claim – their data set actually supports Amborella as sister to all other angiosperms, as do larger plastid data sets we present here that possess more complete taxon sampling both within the monocots and for angiosperms in general. Previous unpartitioned, multi-locus analyses of mtDNA data have provided the strongest support for Amborella + Nymphaeales as sister to other angiosperms. However, our analysis of third codon positions from mtDNA sequence data also supports the Amborella-sister hypothesis. Finally, we challenge the conclusion of Goremykin et al. that the first flowering plants were aquatic and herbaceous, reasserting that even if Amborella + water lilies, or water lilies alone, are sister to the rest of the angiosperms, the earliest angiosperms were not necessarily aquatic and/or herbaceous

    A Targeted Enrichment Strategy for Massively Parallel Sequencing of Angiosperm Plastid Genomes

    Get PDF
    Premise of the study: We explored a targeted enrichment strategy to facilitate rapid and low-cost next-generation sequencing (NGS) of numerous complete plastid genomes from across the phylogenetic breadth of angiosperms

    Angiosperm Phylogeny: 17 Genes, 640 Taxa

    Get PDF
    • Premise of the study : Recent analyses employing up to fi ve genes have provided numerous insights into angiosperm phylogeny, but many relationships have remained unresolved or poorly supported. In the hope of improving our understanding of angiosperm phylogeny, we expanded sampling of taxa and genes beyond previous analyses. • Methods : We conducted two primary analyses based on 640 species representing 330 families. The fi rst included 25 260 aligned base pairs (bp) from 17 genes (representing all three plant genomes, i.e., nucleus, plastid, and mitochondrion). The second included 19 846 aligned bp from 13 genes (representing only the nucleus and plastid). • Key results : Many important questions of deep-level relationships in the nonmonocot angiosperms have now been resolved with strong support. Amborellaceae, Nymphaeales, and Austrobaileyales are successive sisters to the remaining angiosperms ( Mesangiospermae ), which are resolved into Chloranthales + Magnoliidae as sister to Monocotyledoneae + [Ceratophyllaceae + Eudicotyledoneae ]. Eudicotyledoneae contains a basal grade subtending Gunneridae . Within Gunneridae , Gunnerales are sister to the remainder ( Pentapetalae ), which comprises (1) Superrosidae , consisting of Rosidae (including Vitaceae) and Saxifragales; and (2) Superasteridae , comprising Berberidopsidales, Santalales, Caryophyllales , Asteridae , and, based on this study, Dilleniaceae (although other recent analyses disagree with this placement). Within the major subclades of Pentapetalae , most deep-level relationships are resolved with strong support. • Conclusions : Our analyses confi rm that with large amounts of sequence data, most deep-level relationships within the angiosperms can be resolved. We anticipate that this well-resolved angiosperm tree will be of broad utility for many areas of biology, including physiology, ecology, paleobiology, and genomics

    Data access for the 1,000 Plants (1KP) project

    Get PDF
    © 2014 Matasci et al.; licensee BioMed Central Ltd. The 1,000 plants (1KP) project is an international multi-disciplinary consortium that has generated transcriptome data from over 1,000 plant species, with exemplars for all of the major lineages across the Viridiplantae (green plants) clade. Here, we describe how to access the data used in a phylogenomics analysis of the first 85 species, and how to visualize our gene and species trees. Users can develop computational pipelines to analyse these data, in conjunction with data of their own that they can upload. Computationally estimated protein-protein interactions and biochemical pathways can be visualized at another site. Finally, we comment on our future plans and how they fit within this scalable system for the dissemination, visualization, and analysis of large multi-species data sets

    Phylotranscriptomic analysis of the origin and early diversification of land plants

    Get PDF
    Reconstructing the origin and evolution of land plants and their algal relatives is a fundamental problem in plant phylogenetics, and is essential for understanding how critical adaptations arose, including the embryo, vascular tissue, seeds, and flowers. Despite advances inmolecular systematics, some hypotheses of relationships remain weakly resolved. Inferring deep phylogenies with bouts of rapid diversification can be problematic; however, genome-scale data should significantly increase the number of informative characters for analyses. Recent phylogenomic reconstructions focused on the major divergences of plants have resulted in promising but inconsistent results. One limitation is sparse taxon sampling, likely resulting from the difficulty and cost of data generation. To address this limitation, transcriptome data for 92 streptophyte taxa were generated and analyzed along with 11 published plant genome sequences. Phylogenetic reconstructions were conducted using up to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses were performed to test the robustness of phylogenetic inferences to permutations of the datamatrix or to phylogeneticmethod, including supermatrix, supertree, and coalescent-based approaches, maximumlikelihood and Bayesian methods, partitioned and unpartitioned analyses, and amino acid versus DNA alignments. Among other results, we find robust support for a sister-group relationship between land plants and one group of streptophyte green algae, the Zygnematophyceae. Strong and robust support for a clade comprising liverworts and mosses is inconsistent with a widely accepted view of early land plant evolution, and suggests that phylogenetic hypotheses used to understand the evolution of fundamental plant traits should be reevaluated

    Data from: Population genetic structure, genetic diversity, and natural history of the South American species of Nothofagus Subgenus Lophozonia (Nothofagaceae) inferred from nuclear microsatellite data

    No full text
    The effect of glaciation on levels and patterns of genetic variation has been well studied in the Northern Hemisphere. However, although glaciation has undoubtedly shaped the genetic structure of plants in the Southern Hemisphere, fewer studies have characterized the effect, and almost none of them using microsatellites. Particularly complex patterns of genetic structure might be expected in areas such as the Andes, where both latitudinal and altitudinal glacial advance and retreat have molded modern plant communities. We therefore studied the population genetics of three closely related, hybridizing species of Nothofagus (N. obliqua, N. alpina, and N. glauca, all of subgenus Lophozonia; Nothofagaceae) from Chile. To estimate population genetic parameters and infer the influence of the last ice age on the spatial and genetic distribution of these species, we examined and analyzed genetic variability at seven polymorphic microsatellite DNA loci in 640 individuals from 40 populations covering most of the ranges of these species in Chile. Populations showed no significant inbreeding and exhibited relatively high levels of genetic diversity (HE=0.502-0.662) and slight, but significant, genetic structure (RST=8.7-16.0%). However, in N. obliqua, the small amount of genetic structure was spatially organized into three well-defined latitudinal groups. Our data may also suggest some introgression of N. alpina genes into N. obliqua in the northern populations. These results allowed us to reconstruct the influence of the last ice age on the genetic structure of these species, suggesting several centers of genetic diversity for N. obliqua and N. alpina, in agreement with the multiple refugia hypothesis
    • …
    corecore